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The intestinal microbiome has emerged as a tumor-extrinsic 
predictive biomarker to immune checkpoint blockade 
(ICB)1–6. Additionally, there is evidence that the microbiome 

is associated with development of immune-related adverse events 
(irAEs) following ICB7–9. Administration of certain gut commensals 
promotes efficacy of anti-programmed cell death protein-1 (PD-1)  
therapy in mice, providing evidence that microbiota can drive 
immunotherapy outcomes4–6. In two proof-of-concept trials with a 
total of 26 patients, responder-derived fecal microbiota transplan-
tation (FMT) overcame PD-1 resistance in a third of patients with 
melanoma, suggesting that microbiome modulation could improve 
responsiveness to anti-PD-1 ICB10,11. However, there is limited con-
cordance among species identified across studies, which included 
small numbers of patients and used different analytical approaches, 
not always adjusted for multiple testing4,5,12,13. Three meta-analyses 

including multiple tumors and treatments and applying uniform 
computational approaches have not explained discrepancies among 
published cohorts14–16. It also is unclear whether the microbiome 
exerts positive or negative effects on effectiveness of ICB therapy and 
at which time during therapy microbiome action is most important.

In this study, we evaluated a large cohort of microbiome 
samples of PD-1-treated patients with melanoma, integrating 
time-to-event outcomes with variables including medications, 
neutrophil-to-lymphocyte ratio (NLR) and irAEs. We identified 
distinct microbial signatures associated with specific irAE pro-
files and outcomes, and a systemic and enteric lipopolysaccharide 
(LPS)-dependent inflammatory status associated with unfavor-
able clinical response. We performed meta-analysis of microbial 
sequencing data from the new cohort and four published indepen-
dent cohorts of PD-1-treated patients with melanoma4,5,12,13, using 
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the same bioinformatic approach. Cross-cohort microbiome-trained 
machine learning consistently predicted outcomes of PD-1 ther-
apy despite heterogeneity among cohorts. Distinct geographically 
distributed intestinal microbial signatures (microbiotypes) were 
differentially associated with PD-1 response, partly explaining dis-
crepancies among cohorts.

Results
Patients and treatment. Stool samples were collected from 94 
PD-1-treated patients with melanoma (Supplementary Table 1). 
Samples were collected before treatment or within 4 months of start-
ing anti-PD-1 (63 patients, Pittsburgh early sample cohort (P-ESC)) 
or after more than 4 months (range, 4–41 months) from the start of 
anti-PD-1 (31 patients, Pittsburgh late sample cohort (P-LSC)). The 
P-ESC was considered representative of baseline microbiome data 
due to observations that the microbiome of patients treated with 
anti-PD-1, unlike anti-CTLA-4 or chemotherapy, is stable early 
after therapy initiation17–19. Extended Data Fig. 1a,b depicts Kaplan–
Meier curves for progression-free survival (PFS) and overall survival 
(OS) of P-ESC patients. The association of select clinical character-
istics upon OS and PFS was evaluated using Cox regression hazards 
model (Supplementary Table 2). Low body mass index and high 
NLR were negatively associated with OS, while use of proton pump 
inhibitors (PPIs) and high NLR were negatively associated with PFS. 
Data from the Pittsburgh melanoma cohort also were combined in a 
meta-analysis with four published cohorts of PD-1-treated patients 
with melanoma (Supplementary Table 3)4,5,12,13.

Fecal microbiome signatures associate with PD-1-response. To 
estimate the time at which baseline intestinal microbiome composi-
tion was maximally associated with clinical outcomes, we computed 
permutational multivariate analysis of variance (PERMANOVA) 
P values and distances between centroids using taxonomic rela-
tive abundances comparing non-progressors (NPs) and progres-
sors (Ps) at various time points after therapy initiation (Fig. 1a). 
Microbiota composition reflected maximal separation between Ps 
and NPs at 9–10 months (Fig. 1a,b; distance = 0.32, P = 0.006). The 
most differentially abundant species in NPs were Ruminococcus 
(Mediterraneibacter) torques, Blautia producta, Blautia wex-
lerae, Blautia hansenii, Eubacterium rectale, Ruminococcus 
(Mediterraneibacter) gnavus and Anaerostipes hadrus. Ps exhibited 
increased abundance of Prevotella spp., Oscillibacter spp., Alistipes 
spp. and Sutterellaceae spp. (Fig. 1c). To estimate PFS probability 
for each taxon, we categorized patients into high/low groups based 
on the optimal cutoff of fecal bacterial abundance identified using 
Evaluate Cutpoints and calculated Kaplan–Meier curves (Extended 
Data Fig. 1c).

Taxa associated with Ps or NPs in cohorts treated with either 
anti-PD-1 alone (49 patients) or anti-PD-1 in combination with 
pegylated interferon (peg-IFN; 14 patients) were largely concordant 
(Fig. 1c and Supplementary Figs. 1 and 2), suggesting that peg-IFN did 
not affect the associations and thus analysis of the combined results 
increased sample size and significance of the observed differences.

The microbiome of P-LSC patients (mostly long-term NPs) did 
not predict progression subsequent to stool collection (Extended 
Data Fig. 2a,b). The fecal microbiome of P-LSC patients was sig-
nificantly distinct from Ps and similar to NPs in the P-ESC cohort 
(Fig. 1c, Extended Data Fig. 2c,d and Supplementary Fig. 3). These 
data suggest that beneficial microbiome signatures are preserved 
in long-term NPs during therapy. Indeed, using the taxa identi-
fied by Cox regression as positively or negatively associated with 
PFS (Supplementary Tables 4 and 5) to manually train a model for 
prediction of clinical response, a similar area under curve (AUC; 
~90%) was observed for both training early and independent late 
cohorts (Extended Data Fig. 2e).

Survival analyses identified taxa associated with response. 
Favorable or unfavorable association of bacterial species with PFS 
was evaluated by determining fecal abundance cutoff points using 
Evaluate Cutpoints20 for all taxa and calculating Cox regression haz-
ard ratios (HRs). False discovery rate (FDR) was accounted for by 
calculating Storey’s ‘q value’ twice, correcting for both the number 
of taxa and the cutoff points analyzed. This approach identified 
additional taxa (compared to the approach in Fig. 1) associated with 
either improved or decreased PFS (Extended Data Fig. 3a,b and 
Supplementary Tables 4 and 5). Members of the of the Bacteroides 
genus and Proteobacteria phylum appeared to be associated only with 
Ps, while members of Actinobacteria phylum and Lachnospiraceae 
family associated only with NPs. Because many of the species seemed 
to belong to the same genus, family, and so on, we performed statisti-
cal analysis of probabilities that a particular taxonomic level will have 
members behaving similarly (Extended Data Fig. 3b).

Systemic and gut inflammation associates with poor response. 
Consistent with published studies in multiple settings21–24, 
PD-1-treated patients with melanoma with a high NLR had poorer 
survival (OS/PFS) than those with a low NLR. Further, fecal 
microbiome composition was different in patients with high NLR 
compared to low NLR; the species associated with the high NLR 
phenotype were enriched for Gram-negative bacteria (Extended 
Data Fig. 4a,b).

To investigate mechanisms by which the microbiota influ-
ences clinical outcomes, we analyzed microbial gene signatures. 
Of approximately 39,000 genes, 1,200 were differentially abundant  

Fig. 1 | Compositional differences in the fecal microbiome of anti-PD-1-treated patients with melanoma are associated with differential progression-free 
survival. a–c, Valuation of the association of fecal microbiome composition (P-ESC) and response to anti-PD-1 therapy were assessed using shotgun 
metagenomic sequencing. Objective radiographic response to therapy was evaluated using RECIST v1.1 every 3 months, and progression was defined 
based on radiographic and/or clinical progression at each treatment visit (every 3–4 weeks). a, Top, number of patients on follow-up at each time 
point in relation to response status. Middle, distance in composition of the initial microbiome between Ps and NPs identified at each treatment visit. 
Distances between centroids comparing Ps and NPs were calculated at each time point as the Euclidean distance between the two centroids in all 
principal-component dimensions of the Bray–Curtis distance in a principal-component analysis; dots indicate PFS at all time points, while the asterisk 
indicates RECIST v1.1 response (complete response (CR) or partial response (PR)) at 3 months. Bottom, significance of the difference at each time point 
using PERMANOVA 1/p of Bray–Curtis distance. b, t-distributed uniform manifold approximation and projection (t-UMAP) plot depicting fecal microbiota 
compositional differences between NPs and Ps at time of maximal difference from start of therapy (10 months). Open circles represent centroids, with 
connecting lines corresponding to samples from each group. Two-tailed P value was calculated using PERMANOVA. c, Metagenomic shotgun sequencing 
of fecal microbiota samples identified differentially abundant taxa in Ps versus NPs at 10 months from start of therapy (because no events were observed 
in this cohort at 9–10 months after treatment, results at these two time points are identical). Statistical significance was calculated by two-tailed Mann–
Whitney U test. Heat map shows differentially abundant taxa identified by metagenomic shotgun sequencing (FDR < 0.2 and FC > 2). Columns denote 
patients grouped by progression status and clustered within P/NP groups; rows denote bacterial taxa enriched (black) or depleted (red) in NPs versus Ps, 
clustered based on microbiota composition. RECIST v1.1 radiographic response categories: complete response (CR), partial response (PR), stable disease 
(SD), and progressive disease (PD).
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between Ps and NPs (FDR < 0.2 and fold change (FC) > 1.5; 
Extended Data Fig. 5a,b). We identified that microbial signatures 
such as LPS synthesis in Ps and iron bioavailability in NPs may 
affect host response (Extended Data Fig. 5b–d).

To evaluate the impact of intestinal microbiome upon host tis-
sues, we performed noninvasive transcriptomic analyses of shed 
intestinal luminal cells (exfoliome) on the fecal samples used for 
microbiome analysis25,26. We identified ~2,000 host genes expressed 
at >10 reads per sample in 26 samples that were further compared 
between Ps and NPs. Genes encoding pro-inflammatory cyto-
kines (IL1B and CXCL8), transcription factors (NFKBIZ, NFKBIA, 
TNFAIP3 and LITAF) and superoxide dismutase (SOD2) were 
increased in Ps, while NPs exhibited increased expression of genes 
encoding mucosal and endotoxin protective membrane mucins 
(MUC13 and MUC20) and apolipoproteins (APOA1, APOA4 and 
APOB; Fig. 2a). Ingenuity pathway analysis of upstream regula-
tors of differentially expressed host genes identified LPS as a major 
contributor of a pro-inflammatory gene signature in Ps (Fig. 2b). 
Gene-set enrichment analysis (GSEA) predicted that the most 
abundant exfoliated cell type in stool samples from both Ps and NPs 
was intestinal epithelial cells (enterocytes and goblet cells). Fecal 
samples of Ps also had increased inflammatory cells (dendritic cells, 
monocytes, macrophages and neutrophils; Fig. 2c).

To investigate regulatory relationships between host and microbe, 
we created a statistical model of robust interactions, called the tran-
skingdom network11,27,28, among NLR, PFS, host gene expression 
and microbial taxa and genes, consisting of 684 nodes and 10,040 
edges (Fig. 2d). First, the transkingdom network had significantly 
more edges between phenotypes and the other omics types than 
randomly generated ones (Fig. 2e). Second, microbes had the stron-
gest connectivity to phenotypes compared to host and microbial 
genes (Fig. 2e). Taken together, network interrogation revealed 
that microbes (taxa and genes) and host genes were strongly con-
nected with phenotypes, with higher connectivity for microbial 
components than for human genes. Unfavorable microbes had a 
greater influence upon PFS and NLR as illustrated by higher bipar-
tite betweenness centrality (Bi-BC) scores (Fig. 2f; Mann–Whitney 
U, P = 0.013) between all microbes and human phenotypes (that 
is, PFS and NLR). Average node degree did not differ significantly 
between favorable and unfavorable microbes (Fig. 2g).

Collectively, our findings hint that an unfavorable gut microbiome 
enriched in Gram-negative bacteria may promote an LPS-dominated 
inflammatory signature in the gut, resulting in systemic inflamma-
tion manifested by elevated NLR and poor response to anti-PD-1.

Gut microbial signatures are associated with distinct 
immune-related adverse events. IrAEs represent toxicities sec-
ondary to anti-PD-1 therapy that result from off-tumor immune 

activation. We analyzed whether occurrence of irAEs linked to 
anti-PD-1 was associated with microbiome composition in P-ESC 
patients. As in previous reports29–31, landmark analysis (landmark 
time point for OS set at 10 months after therapy initiation) iden-
tified that any-grade irAEs were associated with improved PFS 
(Supplementary Table 6 and Supplementary Fig. 4a).

IrAE occurrence at any time was associated with distinct fecal 
microbiota composition (Fig. 3a). Two taxa groups with opposing 
effects upon anti-PD-1 response (enriched for either Lachnospiraceae 
spp. or Streptococcus spp.) were associated with irAEs (Fig. 3b and 
Extended Data Fig. 6). To exclude immortal time bias (artefactual 
association of favorable taxa with irAEs due to increased PFS and 
thus higher probability to develop irAEs in patients with higher 
abundance of said taxa), we reanalyzed the association of micro-
bial taxa with irAEs using the landmark time point and confirmed 
the association between irAEs and several Lachnospiraceae spp. 
(Supplementary Fig. 4b,c).

Patients developed distinct irAE profiles depending upon the 
abundance of Streptococcus spp. in pretreatment microbiome sam-
ples (Fig. 3c and Extended Data Fig. 6). All eight patients with the 
highest cumulative abundance of seven Streptococcus spp. developed 
irAEs (Fig. 3c). Analysis of the association of different bacteria with 
individual irAEs linked specific bacteria to the occurrence of differ-
ent irAEs (Supplementary Fig. 5). Patients with high Streptococcus 
spp. abundance had significantly shorter PFS compared to those 
with low Streptococcus spp. abundance (Fig. 3d; HR = 3.62, 
P = 0.0073). High Streptococcus spp. abundance was correlated with 
PPI use during therapy (Fig. 3e; χ2 P = 0.0008), which in turn was 
associated with worse PFS (Supplementary Fig. 6a; P = 0.0483). PPI 
use also correlated with the presence of intestinal bacteria associ-
ated with oralization, such as Streptococcus spp. and Veillonella spp. 
(Supplementary Fig. 6b).

Collectively, our findings identified two microbial signatures 
associated with distinct irAE profiles in PD-1-treated melanoma. 
As previously reported, they also link PPI use with fecal micro-
biota oralization32 and adverse outcomes in response to anti-PD-1 
therapy33.

Meta-analysis of gut microbiome in PD-1-treated patients. 
We performed meta-analysis of the microbiome datasets of 
PD-1-treated patients with melanoma from four published cohorts 
and the Pittsburgh cohort (Supplementary Table 3)4,5,12,13. The 
combined dataset comprised 155 shotgun and 150 16S amplicon 
sequenced samples. The definition of patients who were responders 
(Rs) and nonresponders (NRs) was maintained as reported in each 
study. Meta-analysis of α-diversity as measured by inverse Simpson, 
Shannon and observed taxa methods did not show significant dif-
ferences between Rs and NRs for both shotgun (five cohorts) and 

Fig. 2 | Relationship between microbiota composition and associated host variables in relation to clinical response. a, Differentially expressed human 
host genes identified in stool specimens of NPs (n = 18) compared to Ps (n = 8) at 10 months. Significance was calculated using two-tailed Mann–Whitney 
U test. Genes with P < 0.5 and FC > 2 were considered. b, Ingenuity pathway analysis of upstream regulators of differentially expressed host genes in Ps. 
Regulators and their targets were plotted using Cytoscape 3.8.0, with edges showing connections between regulators and their targets. Newly predicted 
upstream regulators are in yellow, while predicted upstream regulators that were included in the identified gene list are in orange. Genes in bold are 
discussed in the text. c, GSEA of predicted cell types based on host genes identified in a and differentially expressed in NPs compared to Ps. Significantly 
enriched (P < 0.05) cell types are depicted by red dots. d, Transkingdom network analysis. Data for microbial taxa (circles), microbial genes (diamonds) 
and human genes (squares) were analyzed to identify highly differentially abundant elements between Ps and NPs and integrated with phenotypes (brown 
hexagons denote clinical outcome (PFS) and baseline variables (NLR)) to form a transkingdom network. Favorable (blue) and unfavorable (red) nodes 
(taxa, microbial genes and host genes) were defined as in Fig. 1c and in Methods. Blue and orange edges indicate negative and positive correlations, 
respectively. e, Number of edges between phenotypes and each type of omics data (taxa, microbial genes and human genes) in the transkingdom (solid 
red line) and randomized networks (the light gray violin plot shows the distribution in 103 random networks, and the dashed black line indicates the 
average). Connectivity strength is the number of observed edges between two groups of nodes in the transkingdom network normalized by the number  
of all possible edges in a bipartite graph of the two groups of nodes. Two-tailed P values were calculated by one-sample Wilcoxon signed-rank test.  
f,g, LKT–phenotype Bi-BC (global property; f) and degree (local property; g) of nodes in the transkingdom network from d were calculated. Two-tailed  
P values were calculated by Mann–Whitney U test. DCs, dendritic cells; mLN, mesenteric lymph node; NK, natural killer.
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16S amplicon (four cohorts) sequenced samples (Extended Data 
Fig. 7a). The high I2 statistic (heterogeneity P value < 0.05) indicated 
the studies were heterogenous.

Reanalysis of the shotgun datasets using the same bioinfor-
matics pipeline11,34,35 mostly reproduced reported taxonomic dif-
ferences between Rs and NRs with minimal overlap between 
datasets (Supplementary Fig. 7a–d). Inter-study heterogeneity was 
reduced by batch correction using an empirical Bayesian frame-
work implemented in the ComBat R package36,37, and pooled 
batch-effect-corrected metagenomic data showed a significant dif-
ference between microbiota of Rs and NRs (Extended Data Fig. 
7b,c; P = 0.002). The top taxa associated with Rs belonged to the 
Actinobacteria phylum and Lachnospiraceae family (Extended Data 
Fig. 7d). Conversely, the top taxa associated with NRs belonged to 
either Bacteroidetes or Proteobacteria (Extended Data Fig. 7d).

To dissect the contribution of taxonomic levels to PD-1 response, 
we performed supervised comparisons of batch-corrected pooled 
microbiota data by linear discriminant effect size (LEfSe) analy-
sis38. Again, organisms within the Firmicutes and Actinobacteria 
phyla were enriched in Rs. Organisms selectively enriched in 
NRs primarily belonged to the Prevotellaceae, Rikenellaceae, 
Porphyromonadaceae and Bacteroidaceae families within the 
Bacteroidetes phylum (Fig. 4a and Supplementary Table 7). To con-
firm these associations in non-batch-corrected data, we performed 
two types of meta-analysis by combining study-level analyses 
between select bacteria in Rs and NRs from the five cohorts (Fisher’s 
method, Fig. 4b; random-effects model, Extended Data Fig. 8a,b). 
These meta-analyses identified many of the previously described 
taxa as associated with response to PD-1 therapy. Taxa belonging to 
a few genera of the Lachnospiraceae family and Actinobacteria phy-
lum including the Bifidobacterium genus were predominant in Rs, 
while multiple Prevotella spp. within Bacteroidetes were enriched 
in NRs.

To validate the predictive power of gut microbiota composi-
tion upon PFS, we analyzed an independent PD-1-treated mela-
noma cohort (Houston) with available time-to-event information4. 
Similarly to the Pittsburgh cohort, baseline fecal microbiota com-
position showed maximal separation of Ps from NPs at 13 months 
(Supplementary Fig. 8a,b). At this time point, we observed micro-
bial signatures that resembled other datasets, including increased 
abundance of Bacteroides massilliensis in Ps and Faecalibacterium 
spp. and Eubacterium spp. in NPs (Supplementary Fig. 8c).

We performed continuous variable Cox regression analyses sepa-
rately for Pittsburgh and Houston cohorts. Significant taxa from the 
Pittsburgh cohort showing a correlation between last known taxon 
(LKT) abundance and PFS are listed in Supplementary Table 8, and 
two representative scattergrams are depicted in Supplementary Fig. 
9a. To overcome sample size limitations, we used GSEA39 to check 
whether significantly enriched organisms at different FDR cutoffs 
(‘LKT sets’) in one cohort (Pittsburgh) were enriched in an inde-
pendent cohort (Houston). Only LKTs associated with shorter PFS 
from one cohort were enriched in the independent cohort, sug-
gesting that unfavorable microbes are more reproducibly identified 
across cohorts (Supplementary Fig. 9b,c).

Gene signature of favorable and unfavorable intestinal taxa. 
Differentially present microbial genes mostly reflect taxonomic dif-
ferences, resulting in identification of taxa-specific genes (passen-
ger genes) rather than genes that may impact host response (driver 
genes). Notably, we identified similar gene signatures associated with 
host response across different taxa, suggesting that unknown vari-
ance in complex microbial communities precluded robust signature 
identification. We observed that subspecies within taxonomically 
identified species were differentially associated with clinical out-
comes. Because functional diversity in taxonomically similar bacte-
ria largely depends on the presence or absence of a discrete number 

of genes linked to those functions, we sought to eliminate the con-
founding effect of taxonomically shared genes and to identify genes 
potentially involved in regulating the phenotype. We performed 
reference-independent binning analysis of assembled contigs 
from the five melanoma patient cohorts similar to the MetaBAT 
approach40,41. We found 13,237 clusters that belonged to 730 taxo-
nomic known units and identified 39,480 genes. This approach per-
mitted subspecies-level gene comparison. Nonparametric statistical 
comparisons are presented as species–gene networks of favorable 
and unfavorable taxa (Fig. 4c,d), along with ‘degree’ statistics (num-
ber of species shared by a gene; Supplementary Fig. 10). Within 
favorable taxa, we identified increased abundance of genes related 
to polysaccharide deacetylation known to play a role in immune 
evasion42, as well as iron transport and iron-induced production of 
reactive oxygen species ROS, which affect mucosal healing43. We 
also observed increased abundance of genes encoding flavin and 
riboflavin metabolism, byproducts of which can be presented by 
MR1 and recognized by mucosal-associated invariant T cells11,44, 
which we showed are activated in PD-1-responsive patients after 
FMT11. Conversely, within unfavorable taxa, genes encoding 
enzymes related to LPS synthesis and mucus degradation such as 
alpha-l-fucosidase45 and alpha-galactosidase46 were increased.

Gut microbiome composition predicts clinical response. To evalu-
ate whether a machine learning model trained on metagenomic 
datasets could predict PD-1 response, we used three machine learn-
ing models: random forest (RF), generalized linear model (GLM) 
and polynomial support-vector machine (poly-SVM). Analysis of 
single datasets using 70:30 train–test splitting showed variable results 
with no cohort giving AUC > 0.79, and cross-training–testing with 
the different cohorts also gave variable results with AUC values rang-
ing from 0.21 to 0.79 (Supplementary Fig. 11a). Meta-analysis of all 
results confirmed that prediction of the combination was not signifi-
cant and that models failed to predict clinical response, most likely 
because of the small size of most cohorts (Supplementary Fig. 11b).

Using leave-one-out cross-validation of batch-corrected pooled 
data with an extra training step (Methods), we found AUC values 
between 0.54 and 1.00 with significant (P < 0.05) accuracy of pre-
diction of clinical responses in 12 of 15 combinations; meta-analysis 
confirmed that each learning method significantly (P < 0.01) pre-
dicted clinical response when trained with microbiota data of unre-
lated cohorts (Fig. 5a,b).

To explore the commonality of important taxa across cohorts, 
we created a network of taxa from the top 20 most important 
(for distinguishing R from NR samples) clusters from the best RF 
models of the five cohorts (Supplementary Fig. 12). A few taxa 
previously identified as favorably or unfavorably associated with 
PD-1 response contributed to the machine learning model across 
more than one cohort. Interestingly, the most involved taxa were 
Bacteroides, Prevotella and Alistipes genera. These findings suggest 
that associations between outcomes and microbial signatures are 
more robust and universal for unfavorable taxa than favorable taxa, 
which tend to be more cohort specific.

Identification of favorable and unfavorable microbiotypes. The 
human gut microbiome includes multiple discrete ecologically 
balanced communities—hereafter referred to as ‘enteric microbio-
types’—that are resilient although still modifiable by diet, drugs and 
lifestyle47–52. While much work has linked individual taxa to out-
come, little is known about the relationship between enteric micro-
biotypes and response to anti-PD-1.

We observed that favorable and unfavorable bacteria identi-
fied in the five melanoma cohorts segregated in distinct clusters 
(Supplementary Fig. 13). To define these clusters, we uniformly 
analyzed 16S rRNA gene amplicon data from the American Gut 
Project (AGP) and PD-1-treated patients with melanoma available 
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Fig. 4 | Gut microbiome meta-analysis of five independent cohorts of patients with melanoma treated with anti-PD-1 identifies organisms and 
microbial genes differentially enriched in responders and nonresponders. a, After removing study-related batch effects using the ComBat R package, the 
resultant batch-corrected dataset was further analyzed using LEfSe analysis and depicted in a cladogram. b, Fisher’s method meta-analysis of differentially 
abundant shotgun-sequenced gut microbiome taxa (P < 0.01) in Rs versus NRs from four publicly available melanoma patient cohorts, along with P-ESC. 
Response to therapy in each of the published cohorts was determined as described in each study (Supplementary Table 3). c,d, Visualization (Cytoscape 
3.8.0) of genes associated with clinical response and shared between favorable (c) or unfavorable (d) species (as identified by LEfSe from all five analyzed 
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are shown in red. Among identified genes, those mentioned in the main text are shown in blue, whereas unlabeled white circles show all other genes. The 
full list of genes enriched in Rs or NRs is reported in Supplementary Fig. 10.
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from four independent melanoma cohorts (Fig. 6a)53. We defined 27 
distinct microbiotypes (Fig. 6a). Some were distinct (for example, 
clusters 9 and 19), while others (for example, clusters 13 and 27) 
had overlapping features with neighboring clusters (Supplementary 
Fig. 14a)54. Concordant with reported enterotypes in the human 
microbiome47,51,55, we identified microbiotype-defining taxa includ-
ing Prevotella spp., Akkermansia spp. and Bifidobacterium spp. 
(Extended Data Fig. 9). Mapping 16S amplicon data from patients 
with melanoma to the AGP map, we observed differential distri-
bution of four cohorts (Fig. 6b and Extended Data Fig. 10a). We 
also observed that Rs and NRs had a nonhomogenous distribution 
(Fig. 6c). By calculating the odds ratio (OR) of Rs to NRs in each 
cluster, Rs and NRs segregated into compositionally distinct favor-
able and unfavorable ‘superclusters’ with differential probabilities 

of response (Fig. 6d). We defined four superclusters that broadly 
grouped microbiotypes with similar correlation between microbial 
composition and clinical response: two enriched in favorable taxa 
and two enriched in unfavorable taxa (Fig. 6e). We also calculated 
probabilities of nonrandom distribution of clusters with ORs in 
similar directions within the same supercluster (Fig. 6e). We used 
analysis of variance (ANOVA; Fig. 6f) and linear discriminant anal-
yses (Fig. 6g and Supplementary Table 9) to evaluate the most dif-
ferentially abundant taxa within each supercluster.

Given differences in microbial taxa abundances in cohorts from 
different US cities and the known contribution of host location to 
microbiota variation4,5,12,13,56, we sought to define the effect of geog-
raphy upon enteric microbiotype distribution. Using geolocation 
data from the AGP cohort, we mapped every sample and calculated 
the proportional distribution of each cluster at the county level 
(Extended Data Fig. 10b,c). Like a report on districts in southern 
China56, we observed preponderances of distinct clusters at the US 
state level (four representative microbiotypes with uneven geo-
graphical distribution shown in Extended Data Fig. 10d), suggest-
ing a possible explanation of inter-study differences. We confirmed 
uneven distribution of microbiotypes and superclusters within the 
four cohorts analyzed (Supplementary Fig. 14b). In particular, favor-
able supercluster 2, characterized by abundance of Oscillospiraceae 
(Ruminococcaceae), was present in the Houston and New York 
cohorts, in which members of this family and Faecalibacterium 
prausnitzii in particular were associated with anti-PD-1 ben-
efit, whereas it was almost absent in the Pittsburgh and Chicago 
cohorts. Favorable supercluster 1, characterized by members of the 
Lachnospiraceae and Bifidobacteriaceae families, was abundant in 
the Pittsburgh and Chicago cohorts, in which Lachnospiraceae and 
Bifidobacteriaceae spp., respectively, were associated with clinical 
response.

Discussion
Several studies demonstrated that gut microbiota composition cor-
relates with response to ICB therapy, and FMT from Rs to NRs 
followed by anti-PD-1 can restore the ability of some patients to 
control tumors. However, the field has been hampered by lack of 
concordance of results among different studies. In addition, it is not 
clear whether the microbiome is important for initial response to 
ICB therapies or during the entire treatment. We show that baseline 
microbiota composition reaches the most significant association 
with clinical response (PFS) in the P-ESC cohort at 9–10 months 
and, similarly, in an independent Houston cohort at 13 months. The 
implications of these findings are several fold. Unlike previous stud-
ies that used multiple different clinical outcomes, these results pro-
vide a scientific rationale for selecting the clinical time point most 
significantly associated with baseline gut microbiome composition. 
They suggest that early response is dominated by host-intrinsic and 
tumor-intrinsic factors, while the microbiota influence on response 
becomes a dominant factor around 1 year after initiation of treat-
ment. Afterwards, the association declines, possibly because of 
resurgence of new tumor-intrinsic factors (for example, appear-
ance of non-immunogenic clones) or loss of beneficial microbiota 
in some patients. In this regard, fecal microbiomes of Rs collected 
around the start of therapy and at much later time points were similar 
to each other but different from microbiomes of NRs. Collectively, 
these observations, together with the ability of FMT to overcome 
primary PD-1-resistance11, suggests that favorable microbiota may 
need to be maintained to prevent disease progression.

We analyzed the role in regulation of therapy not only of indi-
vidual species and strains but also larger taxonomical branches. Due 
to the heterogeneity of biologic properties underlying taxonomic 
diversity of commensal bacteria, response of the host to bacterial 
signals shared at the family level or higher may be involved in mod-
ulation of ICB efficacy. Indeed, our data in the Pittsburgh cohort 
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Fig. 5 | Machine learning shows significant prediction of cohort response 
using models trained on other cohorts combined. a, Receiver operating 
characteristic curves for models trained on the four cohorts and tested on 
the remaining cohort. Three machine learning (modified leave-one-out 
cross-validation (LOOCV)) methods were used: GLM, RF and poly-SVM. 
AUC and P values (P(accuracy) > no information rate) via the one-tailed 
binomial test) of the accuracy of models are given. b, Forest plots based 
on the results from a. Each machine learning method is represented by 
a separate forest plot, with cohorts shown on different lines. Hedge’s g 
(squares, standardized mean differences, size proportional to sample 
size) and associated 95% confidence intervals (bars) are shown along 
with the dashed vertical line of no effect. To control for unobserved 
heterogeneity, we separately evaluated Hedge’s g and P values using a 
random-effects model on metagenomic data and performed an I2 test for 
heterogeneity as shown.
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showed a favorable microbiota signature that included multiple 
members of the Actinobacteria phylum and Lachnospiraceae fam-
ily of Firmicutes phylum, while an unfavorable signature comprised 
members of Bacteroidetes and Proteobacteria phyla. Importantly, 
meta-analysis with four other published datasets largely confirmed 
these findings.

Although machine learning trained by individual cohorts failed 
to predict response across the other cohorts, likely because of 
cohort heterogeneity and small size, a leave-one-out model using 
batch-corrected data and training optimization consistently pre-
dicted the response in all cohorts. Cross-validation identified unfa-
vorable bacteria of the Bacteroidetes phylum as predictive for most 
cohorts, while favorable bacteria of the Clostridium phylum were 
predictive only for subsets of cohorts.

Our data suggest that both systemic and enteric inflammatory 
status may be associated with poor PD-1 response. Patients with a 
high NLR, a biomarker of systemic inflammation predicting poor 
PD-1 response in multiple cancers including melanoma21–24, have 
shorter PFS than patients with a low NLR, associated with enrich-
ment of LPS-producing Gram-negative bacteria in their micro-
biome. Analysis of the fecal exfoliome25 and network analysis 
integrating host and microbial data linked the presence of unfavor-
able taxa in NRs with an LPS-dependent inflammatory signature 
encompassing cytokines either directly or indirectly implicated in 
immune suppression, including CXCL8/interleukin (IL)-8, IL-1β 
and tumor necrosis factor. Using a new binning approach to focus 
on candidate bacterial driver genes, we observed enrichment of 
bacterial genes encoding key enzymes: polysaccharide deacetylase 
(associated with reduction of polysaccharide immunogenicity42) in 
Rs; and alpha-l-fucosidase45 and alpha-galactosidase46 (associated 
with mucus degradation) and glycosyltransferases (associated with 
LPS synthesis57) in NRs. One may speculate that mucus degrada-
tion allows localization of bacteria next to the intestinal epithelium, 
where bacterial products including LPS may promote chronic 
inflammation and immunosuppression.

As also previously proposed on the basis of predictive taxa in a 
meta-analysis of PD-1-treated cohorts16, multiple lines of evidence 
in the present studies—Gram-negative bacteria and LPS association 
with systemic and intestinal inflammation in NRs, transkingdom 
analysis, shared taxa associated with PD-1 response in differ-
ent cohorts and machine learning prediction—converge upon the 
observation that unfavorable taxa are more consistently distributed 
across patients and cohorts than favorable taxa. While these data 
provide a possible explanation for the discordant results of previ-
ous studies, they also suggest a dominant effect of unfavorable taxa 
on PD-1 response, possibly through induction of an immunosup-
pressive inflammatory status. Identification of favorable taxa may 
be more difficult because of uneven distribution across patients, 
shared functions of different taxa, unique mechanisms mediated by 
each taxon or an indirect effect through ecological control of unfa-
vorable taxa abundance.

We observed an association between irAEs and improved 
PFS using a landmark analysis, in agreement with previous stud-
ies58–60, and uncovered that baseline gut microbiome composi-
tion segregated PD-1-treated patients who developed irAEs from 
those who did not. Two distinct microbial signatures were associ-
ated with the insurgence of irAEs. While favorable bacteria of the 
Lachnospiraceae family enhance the immunostimulatory effects of 
anti-PD-1 both against cancer and self-antigens, others dominated 
by Streptococcus spp. may induce organ pathology without enhanc-
ing cancer immunity. Altogether, our findings help reconcile dis-
cordant published results linking irAEs and PD-1 response and will 
need to be confirmed in larger patient cohorts with sufficient repre-
sentation of each type of irAE.

Multiple factors affect the composition of the human gut micro-
biome, including geography, diet, infection and drug usage56,61–64. 

Human intestinal microbiota variation encompasses discrete micro-
bial clusters or enterotypes, although their distribution may be 
continuous and their composition can be variable within the same 
individual47,50,51. Complexity of highly dimensional gut microbiota 
may be better comprehended by organization into discrete classes 
of ecologically balanced communities or enteric microbiotypes 
that consider their functional and ecological context47,55. Enteric 
microbiotypes are distinctive of different geographical areas, as the 
human gut microbiome is affected by ethnicity and geographical 
origin48,49,52. To investigate whether certain microbiotypes are pref-
erentially associated with clinical outcomes of PD-1-treated patients 
with melanoma, we clustered 16S rRNA gene amplicon data avail-
able from AGP and data from four independent melanoma cohorts. 
We observed that microbiotypes were unequally geographically 
distributed in the United States and differentially represented in 
the five analyzed cohorts. Four distinct superclusters (two favor-
able and two unfavorable) comprised distinct microbiotypes, with 
similar association between microbiome composition and clinical 
outcome. Altogether, evaluation of gut microbial signatures through 
the lens of microbiotypes, which exhibit geographical distribution 
and association with clinical outcome, explains some of the incon-
sistencies of previous data while still supporting their relevance.

In summary, our findings identified microbial signatures asso-
ciated with clinical outcomes and irAEs in one new melanoma 
cohort and four previously published cohorts. We provide new data 
supporting the role of the gut microbiome in promoting chronic 
inflammation and immunosuppression. The findings suggest that 
distinct geographically distributed microbiotypes may be preferen-
tially associated with clinical outcome in patients with melanoma 
treated with anti-PD-1. Our work provides a roadmap for future 
studies to confirm the relevance of our findings in large prospective 
cohorts of patients treated with ICB and supports additional pre-
clinical studies to further our understanding of the mechanisms by 
which the gut microbiome regulates antitumor immunity10,11.
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Methods
Patient characteristics. Patient enrollment. Patients with unresectable stage 
III or IV melanoma treated at the University of Pittsburgh’s Hillman Cancer 
Center (HCC) who were receiving frontline anti-PD-1 therapy for treatment of 
advanced disease were eligible. Patients were treated with single-agent anti-PD-1 
immunotherapy (nivolumab, pembrolizumab or investigational anti-PD-1) 
or pembrolizumab in combination with peg-IFN in the context of a separate 
clinical trial, the results of which have been previously published (HCC 13-105, 
IRB approval no. CR19090075-002)66. Of the 94 studied patients, 78 patients 
(83%) were treated with anti-PD-1 in the frontline setting, and 16 patients (17%) 
received other prior therapy (Supplementary Table 1). Stool samples were banked 
under University of Pittsburgh Institutional Review Board-approved banking 
protocols (HCC 96-099 and 20-019, IRB approval nos. MOD19080226-004 and 
STUDY20010266, respectively). Radiographic response to therapy while receiving 
PD-1 inhibitor treatment was determined by the investigators providing the clinical 
treatment and assessed using response evaluation criteria in solid tumors (RECIST 
v1.1)67. Clinical response to therapy was assessed at each visit. Progression was 
defined based on first documented clinical and/or radiographic progression and 
confirmed in all instances.

Clinico-demographic variables. Body mass index, NLR and lactate dehydrogenase 
were based on values obtained immediately before therapy or on the day of 
anti-PD-1 initiation. PPI exposure was defined as exposure to omeprazole, 
esomeprazole, lansoprazole, dexlansoprazole, pantoprazole or rabeprazole taken by 
patients for at least 30 d preceding the date of stool sample collection.

Survival endpoints. PFS was defined as the time from the start of therapy to first 
confirmed clinical and/or radiographic progression. OS was defined as the time 
from the start of therapy to date of death. Patients were censored as of the date of 
last contact.

Immune-related adverse events. irAEs were defined as any clinical and/or laboratory 
event that occurred following initiation of anti-PD-1 therapy that was definitely 
linked to administration of anti-PD-1 therapy based on investigator assessment. 
Adverse events were considered irAEs based on mechanism of action and a 
prespecified list of terms developed by study investigators and grouped under the 
following broader terms: pneumonitis, colitis, hepatitis, nephritis, arthritis, thyroid 
(including hyperthyroidism, hypothyroidism and thyroiditis), adrenal (adrenal 
insufficiency), dermatologic (skin and subcutaneous disorders including rash, 
pemphigoid and vitiligo) and neurologic (Guillain-Barré syndrome, encephalitis 
and myasthenic syndrome). Infusion reactions without immunologic etiology were 
not included in this analysis.

DNA/RNA extraction, sequencing and analysis. Stool samples were collected 
from patients using Alpco EasySampler Stool Collection Kit (https://www.alpco.
com/store/easysamplerr-stool-collection-kit.html) using a patient-specific and 
time-point-specific printed barcoded FedEx label. Samples were shipped overnight 
using a well-insulated FedEx container containing a Thermo pack to maintain a 
temperature below −15 °C to the HCC processing laboratory for initial processing. 
Immediately upon receipt, study staff opened the packages to check for stool 
sample adequacy and to ensure the paperwork (time and date of collection) had 
been completed. Samples were then stored in a −80 °C freezer. If after 2 weeks an 
expected stool sample had not arrived at the HCC laboratory, the participant was 
notified and a follow-up phone call was made to ensure a sample was collected. 
Subsequently, samples were shipped using a cold-chain approach to the Laboratory 
of Integrative Cancer Immunology at the National Cancer Institute (NCI), 
National Institutes of Health (NIH). Total metagenomic DNA was extracted from 
stool samples using the PowerSoil DNA Isolation Kit (MO BIO Laboratories) 
and Epmotion 5075 liquid handling robot (Eppendorf). The DNA library was 
prepared using the Nextera DNA Flex Library Prep Kit, quantified using Qubit, 
and sequenced on the NovaSeq System (Illumina) using the 2 × 150 base-pair (bp) 
paired-end protocol.

All code used for shotgun sequencing analysis can be found within the 
in-house JAMS_BW package, version 1.5.7, publicly available on GitHub (https://
github.com/johnmcculloch/JAMS_BW). Quality trimming and adapter clipping 
of raw reads for each metagenomic sample was carried out using Trimmomatic 
(v0.36)68. Reads were then aligned against the human genome with Bowtie2 
(v2.3.2)69, and unaligned (non-host) reads were assembled using MEGAHIT 
(v1.2.9)70,71. Assembly contigs smaller than 500 bp were discarded. For the 
94 samples, mean sequencing depth (already discounting host reads) was 
10.14 Gbp ± 4.95 Gbp, yielding a mean assembly rate of 81.94% ± 5.24%.

Taxonomic classification of contigs was achieved by k-mer analysis using 
Kraken 2 software72, with a custom 96-Gb Kraken 2 database built using draft and 
complete genomes of all bacteria, archaea, fungi, viruses and protozoa available 
in the NCBI GenBank in April 2020, in addition to human and mouse genomes, 
built in April 2020 using the JAMSbuildk2db tool of the JAMS package. Functional 
annotation of contigs was done ab initio with Prokka (v1.14.6)73. To evaluate 
sequencing depth of each contig, reads used for assembly were then aligned 
back to the assembly contigs. Unassembled reads for each sample were classified 

individually using Kraken 2 on the same database. Taxonomy was expressed as 
the LKT, or the taxonomically lowest unambiguous classification determined 
for each query sequence, using Kraken’s confidence scoring threshold of 5 × 10−6 
(using the --confidence parameter). Relative abundance for each LKT within each 
sample was obtained by dividing the number of base pairs covering all contigs and 
unassembled reads pertaining to that LKT by the total number of non-host base 
pairs sequenced for that sample. Relative abundances were expressed in ppm.

For comparisons between samples, ordination plots were made with the 
t-SNE algorithm using the uwot package in R (https://github.com/jlmelville/uwot) 
and the ggplot2 library. PERMANOVA values were obtained using the adonis 
function of the vegan package, with default (999) permutations and pairwise 
distances calculated using Bray–Curtis distance. Heat maps were drawn using the 
ComplexHeatmap package in R74. For each feature, P values were calculated using 
the Mann–Whitney–Wilcoxon U test on ppm relative abundances for that feature 
in samples within each group. The log2FC values shown on the heat maps were 
obtained by calculating the fold change between the geometric mean ppm relative 
abundance for samples within each group, using the gtools::foldchange2logratio 
function to obtain log2FC value.

Transkingdom network analysis of multi-omics data. Network reconstruction. 
To create a statistical model of robust interactions among the different players, 
we created a transkingdom network11,27,28. Microbial (taxa and genes) and host 
(genes and phenotypes) nodes significantly different between NPs and Ps were 
first selected. Next, the Spearman rank correlation was calculated between all 
pairs of nodes. To keep robust relationships independent of a particular group, 
within-omics interactions were selected if they had the same sign of correlation in: 
(1) early Ps, (2) early NPs, (3) late NPs, and if they satisfied principles of causality 
(that is, satisfied fold-change relationship between the two partners in NPs 
versus Ps). For between-omics interactions, an additional criterion was applied 
to check that the sign of correlation calculated using all samples matched that 
of the within-group correlations. The combined P value (CP) for meta-analysis 
of within-group correlations was calculated based on Fisher’s z-transformation 
of correlations (metacor in R package ‘meta’ v4.9-7). For within-omics edges, 
the cutoffs were as follows: for phenotypes, CP < 5%, FDR < 10%; for host genes, 
within-group P values < 35%, CP < 10%, FDR < 15%; for LKTs, within-group 
P values < 30%, CP < 10%, FDR < 15%; for microbial genes, within-group P 
values < 3%, CP < 1%, FDR < 5%. Connections of microbes (taxa/microbial 
genes) and host genes with phenotypes had FDRs < 5% and 25%, respectively. 
Connections of taxa and microbial genes with host genes had FDRs < 15% and 
5%, respectively, whereas taxa and microbial gene connections had within-group P 
values < 0.25% and FDR < 1%. The resulting transkingdom network was visualized 
with Cytoscape (2.6.3)75. Degree and Bi-BC scores were calculated using R 3.6 and 
compared between favorable and unfavorable LKTs (two-tailed Mann–Whitney 
U test, P value < 5%). To check whether observed interactions were by chance, we 
created 103 random networks keeping the same number of total nodes and edges. 
Next, we assessed connectivity between phenotypes and each type of omics data 
(taxa, microbial and human genes) by calculating the number of observed edges 
between two groups of nodes in the transkingdom network normalized by the 
number of all possible edges in a bipartite graph of the two groups of nodes. P 
values were calculated by one-sample Wilcoxon signed-rank test.

Determining cutoff points for markers with continuous values. Analysis was 
performed using Evaluate Cutpoints software, as described previously20. Briefly, 
the ‘coxph’ function from the ‘survival’ package was used to fit a Cox proportional 
hazard model to the binary outcome (OS, dead/alive; PFS, progressed/not) and 
continuous (overall or PFS time and biomarker value) covariates. Cutoff points 
were then computed with the ‘cutp’ function (survMisc v0.5.5 package), and 
samples were categorized into high and low groups based on biomarker values. A 
Kaplan–Meier plot was generated using a combination of survival v3.2-11, ggplot2 
v3.3.5 and plotly packages. Finally, univariate and multivariate Cox regression 
analyses for categories were performed using the coxph function from survival 
package, and HRs, confidence intervals and P values were calculated.

In silico validation of significant microbes in an independent cohort. Of the 
93 bacteria significant from the Pittsburgh cohort (Supplementary Tables 4 and 
5), applying the same fecal abundance threshold (cutpoint) from the Pittsburgh 
cohort to the Houston cohort showed only 11 unfavorable (HR > 1) bacteria 
(mostly Prevotella spp.) with concordant Cox regression HR direction and P 
value < 10%. However, significance was lost when corrected for multiple testing 
(bacteria). To avoid the use of cohort-specific optimal cutpoints, continuous 
variable Cox regression analyses for log (microbial abundance) versus PFS were 
performed separately for the full Pittsburgh and Houston cohorts (survival v3.2-11; 
survminer v0.4.9; R v4.0.5). Due to the low sample size for the Houston cohort, 
checking for common (multiple-testing corrected) significant microbes from the 
two cohorts would result in more false negatives. Therefore, we applied GSEA as 
a threshold-free enrichment analysis to check whether significant bugs from the 
Pittsburgh cohort were enriched in the Houston cohort. Briefly, ‘LKT sets’ from 
Pittsburgh were defined at different Storey FDR (qvalue v2.22.0) cutoffs, and LKTs 
from Houston were ranked as per their beta (ln(HR)) from continuous variable 
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Cox regression. GSEA checks whether microbes from an LKT set from one cohort 
are overrepresented at the ‘top’ (or ‘bottom’) of the ranked list in the second cohort 
more than expected by chance. Enrichment plots were generated using standalone 
GSEA (v4.1.0), fgsea (v1.16.0) and ggplot2 (v3.3.5).

Landmark analyses to determine the effect of immune-related adverse events 
on progression-free survival. To account for lead-time bias inherent to the 
time-dependent nature of irAEs, we performed landmark analysis for PFS using 
only patients who survived for at least 10 months after initiation of therapy. An 
irAE was considered present if it developed before the landmark date or absent 
if it had not developed before the landmark date and/or occurred after the 
landmark date76.

The time point of 10 months was chosen based on our observations regarding 
the time when favorable and unfavorable microbiota maximally segregated 
between anti-PD-1-treated patients with melanoma (Fig. 1a,b). This 10-month 
time point also maximized the number of patients who developed irAEs while 
minimizing the number of patients who progressed before the landmark. A similar 
method has been adopted in multiple prior analyses of anti-PD-1-treated patients 
with melanoma, wherein conditional landmark analyses were performed to remove 
guarantee-time bias77.

Machine learning methods. Machine learning analyses were performed on 
taxonomic counts that were batch corrected by study using ComBat (v. 3.20.0)78. 
For comparison, several machine learning methods were tested—RF79, SVM80 and 
GLM81 using an inverse link function.

Each study was balanced by randomly removing either R or NR samples to 
obtain equal numbers of Rs and NRs. To reduce the number of features involved 
in training for the all-versus-all analysis, k-means clustering with k = 150 was 
applied to the taxonomic count table to create 150 clusters. Organisms belonging 
to each cluster were recorded to allow interpretation of clusters. Machine learning 
models were produced for each study with the R package caret v6.0.90 (https://
CRAN.R-project.org/package=caret) using a training set of 70% of samples, with 
the remaining 30% used to evaluate model performance. To help improve results 
of the models given the random effects of picking train–test sets as well as random 
factors involved in various machine learning methods, the model chosen for 
further use was the best performing model from 100 bootstrap replicates of 70/30 
train–test sets. The code used to create these results is available at https://github.
com/trinchierilab/microbiotapd1melanoma2021.

Separately, we implemented a new modification of the traditional leave-one-out 
cross-validation approach where we tried to overcome limitations of the small 
training size of the cohorts. Models were trained on batch-corrected taxon count 
data from four of the five cohorts and tested on the remaining cohort. However, for 
selection of the model from the test dataset, we additionally repeatedly separated 
the training dataset into 70:30 train–test splits and performed training/testing 
using RF, GLM and poly-SVM 100 times. Afterwards, the best model was selected 
and used to test on the initially left-out dataset. That procedure was repeated 
for all cohorts. Statistical significance of the consistency of predictions across 
different cohorts and different machine learning methods was performed using a 
random-effects model in forest plots.

A manual predictive model was trained on the organisms associated with 
increased and decreased PFS in the Pittsburgh cohort (Supplementary Tables 4 
and 5). For each sample, a positive score was given to each organism associated 
with increased PFS surpassing its cutpoint and a negative score to each organism 
associated with decreased PFS surpassing its cutpoint. As there were more 
organisms associated with decreased PFS than increased PFS, positive score was set 
to 2.5 and negative score to –1.

Transcriptomic analyses of exfoliated intestinal cells. Fecal RNA was isolated 
with Epmotion 5730 using MO BIO’s PowerFecal kit (Qiagen). Although the fecal 
environment is capable of quickly degrading host RNA, the very large number 
of cells shed into the lumen makes RNA identification possible. In addition, 
shed cells most likely die very fast in the intestinal lumen and thus would have 
minimal time to change RNA expression levels. Sequencing libraries were prepared 
using Illumina TruSeq Stranded Total RNA sequencing kit, following depletion 
of bacterial ribosomal RNA with the RiboZero (Illumina) kit. Libraries were 
quantified using Qubit and sequenced using Nextseq 500. Sequencing reads, after 
adapter trimming with Trimmomatic (0.33)68 and basic quality control, were 
analyzed using the RSEM package. Resultant count files were further analyzed 
with R 4.04. Briefly, genes with counts that had less than five reads, genes encoding 
ribosomes, and ribosomal and mitochondrial genes were removed, and counts 
were log transformed and quantile normalized. P values were calculated using the 
Mann–Whitney U test and visualized using ggplot2 in R. Significant genes were 
uploaded to Ingenuity Pathway Studio, and upstream regulator analysis output was 
used to construct a network using Cytoscape (3.8.0)75.

For cell prediction analysis, the resultant datasets were individually analyzed 
using GSEA and compared to a gmx file containing gene signatures of all cell 
types that we derived in-house from the Immgen database (https://www.immgen.
org/). GSEA analysis was done in R using the fgsea package v1.19.4. Normalized 
enrichment scores were used to calculate ratios between Rs and NRs, and 

normalized size was used to represent abundance of different cell types in the 
data. For difference between NPs and Ps, we used ranked values of NP/P ratios. 
For prediction of cell abundance, we used ranked values of individual samples. 
Resultant values of leading-edge GSEA analysis were used to calculate ratios of 
differences between Rs and NRs and presented as average values of leading-edge 
analysis for all samples to visualize abundance of the predicted cell type, analogous 
to a standard MA plot.

Meta-analysis methodologies. Data were analyzed using two meta-analysis 
methods: Fisher’s method for combining P values, and a random-effects model. 
The random-effects model meta-analysis was calculated using meta package in R 
with default parameters. Taxa with heterogeneity P values > 0.1 were considered. 
Fisher’s combined P value was calculated as follows. The results of individual 
analysis of all datasets were compared. Taxa that agreed in directionality of NP 
versus P differences in more than four of five datasets were considered. When taxa 
in one of five datasets failed to agree in directionality, its P values were assigned as 
0.999 and ratio as one. χ2 values and the combined P value were calculated. Data 
were visualized using heat maps or volcano plots (R 4.04).

Reference-independent binning analysis of metagenomic data. Sequencing 
reads were quality trimmed using Trimmomatic (0.33)68, host RNA was removed 
using Bowtie2 (v2.3.2)69. Reads for all samples from all five cohorts were combined 
into one large file and larger sequence contigs were assembled using MEGAHIT 
(1.2.9)70,71. Reads longer than 1,000 bp were used in the analysis. Contigs were 
indexed using bwa package v0.7.17, and reads from individual samples were 
aligned to contigs. The resultant dataset was used to calculate clusters using 
Phenograph R package v0.99.1 and t-SNE plots. To reduce cluster overlap, contigs 
were subdivided into taxonomic units using Kraken package before application 
of Phenograph clustering tool. Clusters were merged into single fasta files and 
analyzed again using Kraken. Resultant clusters were considered independent 
functional taxonomical units (FTUs). To perform comparison between FTUs 
within specific taxa, for every FTU we created a taxa–gene dataset where existence 
of the gene was remarked by number ‘1’ and absence by ‘0’. Favorable and 
unfavorable taxa were identified using statistical tools described above, and the 
top 30% and bottom 30% of taxa were used for statistical comparisons. Taking 
advantage of the presence of genes associated with clinical response in only a 
fraction of subspecies of certain taxonomic species but shared among more than 
one different species, we attempted to identify bacterial genes potentially encoding 
products directly or indirectly affecting clinical response. Data were visualized 
using Cytoscape (v.3.8.0)75.

Clustering of enteric microbiotypes from metagenomic data. Stool AGP 
data were used for analysis. Only read 1 was used in the analysis. Data were 
pooled together with 16S data from the abovementioned cohorts. All sequences 
from AGP and patient samples were corrected for possible expansion at room 
temperature of certain species (‘bloom’) using the ‘Deblur’ technique (v.1.1.0), 
which has been shown with AGP samples to yield results consistent with studies 
of carefully preserved samples65. Quality-trimmed data were combined into one 
file, and unique sequences with more than ten reads were identified and used as 
a reference. Unique reads were indexed with bwa, and sequences from individual 
samples were mapped back to those reads. Data, like the analysis above, were 
clustered using Phenograph R package v0.99.1; the most abundant sequence of the 
cluster was classified using RDP algorithm in Mothur v1.45.2, and these data were 
assigned to the whole cluster. The resultant dataset was filtered to include at least 
5,000 reads per sample and clustered using Phenograph R package and t-SNE into 
bins (or tentative microbiotypes). To determine favorable or unfavorable status 
of the microbiotype, every OR was calculated for every cluster. A random-effects 
model for uniformity of clusters was calculated with the R package meta (v5.1-1) 
using number of Rs and NRs as mean and n, and standard deviation values were 
calculated from the Poisson distribution model. Once favorable and unfavorable 
clusters were defined, we used linear discriminant analyses (LEfSe package v1.1.2) 
or ANOVA analysis to identify taxonomic composition of those groups.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The corresponding authors will comply with all requests for raw and analyzed 
data and materials after verification whether the request is subject to any patients’ 
confidentiality obligation. Patient-related data not included in the paper were 
generated as part of clinical trials and might be subject to patient confidentiality. 
All sequencing (human and microbiome) data and de-identified metadata that 
support the findings have been deposited in NCBI databases and are all accessible 
via BioProject accession no. PRJNA762360. AGP data are available at the ENA 
database (https://www.ebi.ac.uk/) under accession no. PRJEB11419. Access to 
publicly available sequencing data of the other cohorts analyzed in this study 
was obtained through BioProject accession nos. PRJNA399742 (Chicago), 
PRJNA541981 (New York), PRJNA397906 (Dallas) and PRJEB22893 (Houston). 
Source data are provided with this paper. The Sequence Read Archive accession 
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numbers for each sample from each of these cohorts is the stated name of the 
sample on the spreadsheet in the source data. All other data are provided within the 
paper and its Supplementary Information files.

Code availability
All codes used for shotgun sequencing analysis can be found within the in-house 
JAMS_BW package, version 1.5.7, publicly available on GitHub (https://github.
com/johnmcculloch/JAMS_BW/). GSEA analysis was done in R using fgsea 
package 1.19.4. Codes for transkingdom network analysis are available at https://
github.com/richrr/TransNetDemo/. Additional codes used are part of the 
packages mentioned in the text or can be found on GitHub at https://github.com/
trinchierilab/microbiotapd1melanoma2021/.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Kaplan-Meier plots of progression-free survival and overall survival in the Pittsburgh early sample cohort and progression-free 
survival after dichotomization for abundance of select bacterial species. a and b. Kaplan-Meier plots of probability of progression-free survival (PFS) 
(a) and overall survival (OS) (b) of PD-1-treated Pittsburgh early cohort melanoma patients. Vertical ticks show censored data. Central line is median 
OS or PFS probability, shaded area shows 95% confidence interval. c. Optimal cutpoints of bacterial abundance determined using Evaluate Cutpoints. 
Different plots show the effect on PFS of abundance (high vs. low) of the top four most significantly increased (left) and decreased (right) individual 
bacterial species in non-progressors at 10 months, determined using Mann-Whitney U test (Fig. 1c). Number of people at risk in in either group (high vs. 
low abundance) is shown below each panel. Vertical ticks show censored data. Hazard Ratio (HR) and score (logrank) test two-tailed p-value from Cox 
proportional hazards regression analysis.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Microbiota composition of non-progressing patients in the Pittsburgh cohort whose stool samples were collected 4–41 months 
after initiation of therapy is not predictive of late therapy failure but is enriched for similar bacterial taxa as observed in the initial microbiome of 
patients who did not progress at 10 months. a. Plot of time of stool sample acquisition from 31 patients whose samples were collected after >4 months 
from therapy initiation. b. Progressor (P) and non-progressor (NP) groups identified at serial timepoints after late stool collection (top panel) were used 
to calculate the significance (two-tailed p-value) of compositional differences of the late-collected fecal microbiome using PERMANOVA (bottom panel). 
Fecal microbiota composition was determined using metagenomic sequencing. Progression during continued therapy was evaluated using RECIST v1.1 
every 3 months or by clinical observation during follow-up visits. Number of patients on follow-up at each timepoint in relation to response status is 
shown in top panel. c. t-distributed uniform manifold approximation and projection (t-UMAP) plot depicts fecal microbiota compositional differences 
between early-collected patients who progressed (red) or did not progress (blue) in the first 10 months after initiation of therapy and late-collected 
long-term responders (green). Distance between centroids calculated as described in Fig. 1a, and significance (two-tailed p-value) of the differences 
by PERMANOVA are shown in lower table. d. Heatmap shows differentially abundant taxa (p < 0.05 and FC > 2) between the late Pittsburgh cohort 
compared with Ps (top) and NPs (bottom) at 10 months from the early Pittsburgh cohort. Columns denote patients grouped by each cohort before 
clustering; rows denote bacterial taxa enriched (black) or depleted (red) in early-sampled P versus late-sampled long-term NP clustered based on 
microbiota composition. Two-tailed p-values were calculated using two-tailed Mann-Whitney U test. e. ROC curve for manual model trained on the 
organisms associated with increased and decreased PFS in the Pittsburgh cohort from Supplementary Tables 4 and 5. Note that the model predicts late 
Pittsburgh samples well even though they were not included in the data used in training.
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Extended Data Fig. 3 | Entire time-to-event progression data analysis by Cox regression method of baseline fecal microbiome composition identifies 
additional favorable and unfavorable taxa linked with response to anti-PD-1 immunotherapy. a. Volcano plot depicting bacteria identified by effect on 
progression-free survival (PFS) in the Pittsburgh early sample cohort using Cox regression analysis in Evaluate Cutpoints software. Taxa with q < 0.05 are 
shown as red dots. b. Cladogram visualization (favorable taxa – blue; unfavorable taxa – red) of bacterial taxa at different phylogenetic levels identified 
using approach described in (a).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Differential abundance analysis reveals relationship of baseline gut microbial taxa with high vs. low neutrophil-lymphocyte 
ratio in Pittsburgh early sample cohort. a. t-distributed uniform manifold approximation and projection (t-UMAP) plots depicting fecal microbiota 
compositional differences between patient groups with high (≥3.82; orange) and low (<3.82; green) pre-treatment neutrophil-lymphocyte ratio (NLR). 
Optimal cutoff for NLR (3.82) was determined by time serial PERMANOVA as shown in Fig. 1a. Two-tailed p-value was calculated using PERMANOVA. 
b. Heatmap of differentially abundant taxa (p < 0.05 and FC > 2) in high-pre-treatment NLR (orange) and low-NLR (green) patients, using optimal cutoff 
(3.82). Columns denote patients grouped by NLR status and clustered within each group; rows denote bacterial taxa enriched (red) in patients with high 
NLR clustered based on microbiota composition; no bacterial taxa significantly enriched in the low-NLR patients were identified. Statistical significance 
was calculated using two tailed Mann‐Whitney U test. Bar plot to left of heatmap indicates extent of association between corresponding taxa and PFS 
probability [scaled hazard ratio (HR)] with Storey’s q-values <0.1 displayed within cells. Proportion of Gram-negative bacteria among those associated 
with high NLR was 58%, significantly higher than the average proportion of Gram-negative in patients’ fecal microbiome (28%, Chi-squared p = 0.0004).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Gut microbial gene differences discriminate between non-progressors and progressors during anti-PD-1 therapy in the 
Pittsburgh early sample cohort. a. t-distributed uniform manifold approximation and projection (t-UMAP) plot depicting genetic differences of gut 
microbiomes between non-progressors (NPs; blue) and progressors (Ps; red) at time of maximal difference from start of therapy (10 months). Filled  
circles represent centroids, with connecting lines corresponding to samples from each group. Two-tailed p-value was calculated using PERMANOVA.  
b. Metagenomic shotgun sequencing of fecal microbiota samples identifies differentially abundant genes in Ps vs. NPs at 10 months from start of therapy. 
Heatmap shows differentially abundant genes identified by metagenomic shotgun sequencing (FDR < 0.2 and FC > 1.5). Columns denote patients grouped 
by progression status and clustered within P/NP groups; rows denote bacterial genes significantly upregulated (red) or downregulated (blue) in Ps versus 
NPs. c and d. Select genes involved in representative microbial processes of lipopolysaccharide (LPS) processing (c) and iron metabolism (d).

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ArticlesNATuRE MEDiCiNE

Extended Data Fig. 6 | Metagenomic sequencing identifies distinct taxa associated with various immune-related adverse events in PD-1-treated 
melanoma patients in Pittsburgh early cohort. Heatmap depicts metagenomic compositional differences between patients with a given immune-related 
adverse event (irAE) as compared to patients with other irAEs using scaled fold differences (high – red; low – blue) in abundances of specific bacteria. 
Values in individual cells represent unadjusted p-values calculated using two-tailed Mann-Whitney U test, with p-values <0.1 displayed within cells. Bar 
plot to left of heatmap indicates extent of association between corresponding taxa and progression-free survival probability [scaled hazard ratio (HR)], 
with Storey q-values <0.1 displayed within cells (from Supplementary Tables 4 and 5).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Reanalysis of four previously published individual cohorts using the same bioinformatic pipeline. a. Analysis of α-diversity 
from five PD-1-treated melanoma patient cohorts (n = 185), including the Pittsburgh early sample cohort (n = 63), using either shotgun metagenomic 
(5 cohorts, red) or 16S rRNA gene amplicon (4 cohorts, black) sequencing. Details of each individual cohort are summarized in Supplementary Table 
3. Forest plots depict α-diversity-based association tests including inverse Simpson, Shannon, and observed operational taxonomic units. Within each 
fixed-effect plot, names of each cohort are shown on a separate line, while log odds ratio of α-diversity (squares, size proportional to sample size used in 
meta-analysis) and associated 95% confidence intervals (bars) are shown, along with the dotted vertical line of no effect. The p-values reported for each 
cohort are two-tailed p values computed from the z statistic. To control for unobserved heterogeneity, we separately evaluated α-diversity using a random 
effects model on both pooled shotgun and 16S sequencing data from the 5 cohorts and performed I2 test for heterogeneity as shown. The p-value reported 
for heterogeneity is a one-tailed Cochran’s Q-test. b. t-distributed uniform manifold approximation and projection (t-UMAP) plot before (left) and after 
(right) correction for study-related batch effect using ComBat R package for all cohorts together including Pittsburgh cohort. P-values were calculated 
using PERMANOVA. c. t-UMAP plot of batch-corrected pooled metagenomic sequencing data from five separate cohorts of melanoma patients treated 
with anti-PD-1 therapy depicting fecal microbiota compositional differences with two-tailed p-value calculated using PERMANOVA between responders 
(Rs) and non-responders (NRs). d. Heatmap of differentially (p-values were calculated using non-parametric two-tailed Mann-Whitney U test) abundant 
gut microbiome taxa (p < 0.05, FC > 2) evaluated with shotgun sequencing in five melanoma patient cohorts, including Pittsburgh early sample cohort. 
Study-related batch effect was removed using ComBat R package. Response to therapy in published cohorts was determined as described in each study 
(Supplementary Table 3). Response to therapy in the Pittsburgh early sample cohort was defined as non-progression at 10 months after initiation of 
treatment. Columns represent patients grouped by clinical response and clustered within R/NR groups; rows depict bacterial taxa enriched (black) or 
depleted (red) in Rs versus NRs clustered based on gut microbiota composition.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Meta-analysis of all cohorts using random effects model identifies organisms differentially enriched in melanoma patients 
treated with anti-PD-1 therapy in separate cohorts by response status. a. Random effect model meta-analysis of differentially abundant bacteria between 
responders (Rs) and non-responders (NRs) from five cohorts (n = 185) including Pittsburgh early sample cohort (n = 63) using shotgun metagenomic 
sequencing. All significant bacterial taxa enriched in Rs and NRs are shown. b. Forest plots depict association of representative bacterial species with 
response to anti-PD-1 therapy. Within each plot, names of various cohorts are shown on separate lines, while Hedge’s g (squares, standardized mean 
differences, size proportional to sample size) and associated 95% confidence intervals (bars) are shown, along with the dotted vertical line of no effect. 
To control for unobserved heterogeneity, we separately evaluated Hedge’s g using random effect model on metagenomic data and performed I2 test for 
heterogeneity as shown. P-values were calculated using random effect model.
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Extended Data Fig. 9 | Expression levels of selected taxa in different American Gut Project enteric microbiotypes. t-distributed stochastic neighbor 
embedding (t-SNE) plots depicting American Gut Project (AGP) dataset with visualization of abundances of select taxa (blue – low; red – high).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Geographic differences determine sampling variability between cohorts. a. t-distributed stochastic neighbor embedding (t-
SNE) plots depicting mapping of individual melanoma patient cohorts to American Gut Project (AGP) dataset revealed distinct compositional differences 
between them. Each cohort is represented by a different color that is maintained in the overlay. Colors in the overlay are semi-translucent and were 
stratified starting from the Pittsburgh to New York cohort. Gut microbiota compositions of the different cohorts were significantly different (PERMANOVA, 
two-tailed p < 0.001). b. and c. Heatmaps represent scaled abundances of each enteric microbiotypes across 28 states from which AGP data were 
available on the left, with the four states from which anti-PD-1-treated melanoma cohorts originated separately on the right using three individuals per 
county per cluster as a cutoff. Data were scaled by number of individuals per state and per cluster and are depicted in relation to the 28 states that met the 
cutoff and in relation to the four states from which the four studied cohorts originated. b. Heatmaps are (b) scaled only by number of samples from state 
(to reflect local abundance of microbiotypes) or (c) scaled by both number of samples per state and by number of samples per microbiotype (to reflect 
distribution of different microbiotypes across the US). d. Geographic representation in the US of four representative enteric microbiotypes, with most 
uneven distribution between four states (right panel in c).
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